Searching for Additive Outliers In Nonstationary Time Series¤

نویسندگان

  • Pierre Perron
  • Gabriel Rodríguez
چکیده

Recently, Vogelsang (1999) proposed a method to detect outliers which explicitly imposes the null hypothesis of a unit root. It works in an iterative fashion to select multiple outliers in a given series. We show, via simulations, that under the null hypothesis of no outliers, it has the right size in ...nite samples to detect a single outlier but when applied in an iterative fashion to select multiple outliers, it exhibits severe size distortions towards ...nding an excessive number of outliers. We show that his iterative method is incorrect and derive the appropriate limiting distribution of the test at each step of the search. Whether corrected or not, we also show that the outliers need to be very large for the method to have any decent power. We propose an alternative method based on ...rst-di¤erenced data that has considerably more power. We also show that our method to identify outliers leads to unit root tests with more accurate ...nite sample size. The issues are illustrated using two US/Finland real-exchange rate series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Recursive estimation in autoregressive models with additive outliers

This work deals with recursive robust estimation in autoregressive models that are contaminated by additive outliers. The importance of such procedures in applied time series is obvious: (i) the recursive character of the estimation allows to treat time series in real time (on-line) updating previous estimates by means of simple calculations after delivering new observations; (ii) robustness of...

متن کامل

New optimized model identification in time series model and its difficulties

Model identification is an important and complicated step within the autoregressive integrated moving average (ARIMA) methodology framework. This step is especially difficult for integrated series. In this article first investigate Box-Jenkins methodology and its faults in detecting model, and hence have discussed the problem of outliers in time series. By using this optimization method, we wil...

متن کامل

On a Robust Test for SETAR-Type Nonlinearity in Time Series Analysis

ABSTRACT There has been growing interest in exploiting potential forecast gains from the nonlinear structure of self-exciting threshold autoregressive (SETAR) models. Statistical tests have been proposed in the literature to help analysts check for the presence of SETAR-type nonlinearities in observed time series. However, previous studies show that classical nonlinearity tests are not robust t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000